203 research outputs found

    Patterns of Insertion and Deletion in Mammalian Genomes

    Get PDF
    Nucleotide insertions and deletions (indels) are responsible for gaps in the sequence alignments. Indel is one of the major sources of evolutionary change at the molecular level. We have examined the patterns of insertions and deletions in the 19 mammalian genomes, and found that deletion events are more common than insertions in the mammalian genomes. Both the number of insertions and deletions decrease rapidly when the gap length increases and single nucleotide indel is the most frequent in all indel events. The frequencies of both insertions and deletions can be described well by power law

    Effects of sunlight on tundra nitrous oxide and methane fluxes in maritime Antarctica

    Get PDF
    The relationships of nitrous oxide (N2O) and methane (CH4) emissions to other environmental parameters have been studied extensively in Antarctic terrestrial ecosystems. However, the effects of sunlight on soil N2O and CH4 fluxes are neglected across the Antarctic tundra. Here, fluxes of N2O and CH4 from maritime Antarctic tundra soils were measured in the absence and presence of sunlight during three summers. The N2O fluxes averaged −4.6±1.2 μg·m−2·h−1 in the absence of sunlight and 5.7±1.5 μg·m−2·h−1 in its presence; CH4 fluxes averaged 119.8±24.5 μg·m−2·h−1 (absence) and −40.5±28.3 μg·m−2·h−1 (presence). The correlations between N2O and CH4 fluxes and other environmental variables (e.g., soil moisture, temperature, organic and inorganic material) were not statistically significant (P>0.05) at all sites. On average, sunlight significantly increased N2O emissions and CH4 uptake by 10.3 μg·m−2·h−1 and 160.3 μg·m−2·h−1, respectively. This study indicates that sunlight is critical for accurately estimating N2O and CH4 budgets from maritime Antarctica and necessary for constraining the role of their emissions from tundra soil

    Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain

    Get PDF
    Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain

    CD8(+) T Cells Involved in Metabolic Inflammation in Visceral Adipose Tissue and Liver of Transgenic Pigs

    Get PDF
    Anti-inflammatory therapies have the potential to become an effective treatment for obesity-related diseases. However, the huge gap of immune system between human and rodent leads to limitations of drug discovery. This work aims at constructing a transgenic pig model with higher risk of metabolic diseases and outlining the immune responses at the early stage of metaflammation by transcriptomic strategy. We used CRISPR/Cas9 techniques to targeted knock-in three humanized disease risk genes, GIPR(dn) , hIAPP and PNPLA3(I148M) . Transgenic effect increased the risk of metabolic disorders. Triple-transgenic pigs with short-term diet intervention showed early symptoms of type 2 diabetes, including glucose intolerance, pancreatic lipid infiltration, islet hypertrophy, hepatic lobular inflammation and adipose tissue inflammation. Molecular pathways related to CD8(+) T cell function were significantly activated in the liver and visceral adipose samples from triple-transgenic pigs, including antigen processing and presentation, T-cell receptor signaling, co-stimulation, cytotoxicity, and cytokine and chemokine secretion. The similar pro-inflammatory signaling in liver and visceral adipose tissue indicated that there might be a potential immune crosstalk between the two tissues. Moreover, genes that functionally related to liver antioxidant activity, mitochondrial function and extracellular matrix showed distinct expression between the two groups, indicating metabolic stress in transgenic pigs' liver samples. We confirmed that triple-transgenic pigs had high coincidence with human metabolic diseases, especially in the scope of inflammatory signaling at early stage metaflammation. Taken together, this study provides a valuable large animal model for the clinical study of metaflammation and metabolic diseases.Peer reviewe
    • …
    corecore